
Robots on Earth
Typical
industrial robots do jobs that are difficult, dangerous or dull. They
lift heavy objects, paint, handle chemicals, and perform assembly work.
They perform the same job hour after hour, day after day with precision.
They don't get tired and they don't make errors associated with fatigue
and so are ideally suited to performing repetitive tasks. The major
categories of industrial robots by mechanical structure are:
Cartesian robot /Gantry robot: Used for pick and place work, application of sealant, assembly operations, handling machine tools and arc welding. It's a robot whose arm has three prismatic joints, whose axes are coincident with a Cartesian coordinator.
Outside the manufacturing world robots perform other important jobs. They can be found in hazardous duty service, CAD/CAM design and prototyping, maintenance jobs, fighting fires, medical applications, military warfare and on the farm.
An eight-legged, tethered, robot named Dante II descended into the active crater of Mt. Spurr, an Alaskan volcano 90 miles west of Anchorage. Dante II's mission was to rappel and walk autonomously over rough terrain in a harsh environment; receive instructions from remote operators; demonstrate sophisticated communications and control software; and determine how much carbon dioxide, hydrogen sulfide, and sulfur dioxide exist in the steamy gas emanating from fumaroles in the crater. Via satellite, Dante II sent back visual information and other data, as well as received instruction from human operators at control stations in Anchorage, Washington D.C., and the NASA Ames Research Center near San Francisco. Dante II saves volcanologists from having to enter the craters of active volcanoes. It also demonstrates the technology necessary for a robot to explore the surface of the moon or planets. That is, the robot must be able to walk on rough terrain in a harsh environment, receive instructions from remote operators about where to go next, and reach those commanded goals autonomously.
operated vehicle (TROV) into the freezing Arctic Ocean waters to investigate the remains of a whaling fleet lost in 1871. The TROV was tethered to the surface boat Polar Star by a cable that carried power and instructions down to the robot and the robot returned video images up to the Polar Star. The TROV located two ships which it documented using stereoscopic video cameras and control mechanisms like the ones on the Mars Pathfinder. In addition to pictures, the TROV can also collect artifacts and gather information about the water conditions. By learning how to study extreme environments on earth, scientists will be better prepared to study environments on other planets.
Today, two important devices exist which are proven space robots. One is the Remotely Operated Vehicle (ROV) and the other is the Remote Manipulator System (RMS).
An ROV can be an unmanned spacecraft that remains in flight, a lander that makes contact with an extraterrestrial body and operates from a stationary position, or a rover that can move over terrain once it has landed. It is difficult to say exactly when early spacecraft evolved from simple automatons to robot explorers or ROVs. Even the earliest and simplest spacecraft operated with some preprogrammed functions monitored closely from Earth. One of the best known ROV's is the Sojourner rover that was deployed by the Mars Pathfinder spacecraft. Several NASA centers are involved in developing planetary explorers and space-based robots.
The most common type of existing robotic device is the robot arm often used in industry and manufacturing. The mechanical arm recreates many of the movements of the human arm, having not only side-to-side and up-and-down motion, but also a full 360-degree circular motion at the wrist, which humans do not have. Robot arms are of two types. One is computer-operated and programmed for a specific function. The other requires a human to actually control the strength and movement of the arm to perform the task. To date, the NASA Remote Manipulator System (RMS) robot arm has performed a number of tasks on many space missions-serving as a grappler, a remote assembly device, and also as a positioning and anchoring device for astronauts working in space.
You may be able to boost the speed by wiring batteries in series, and using bigger batteries(possibly). Make sure you have a nice motor that's capable of handling the combined batteries; if you're looking to go for duration/or wiring in series didn't work, wire them in parallel.
ReplyDeleteused industrial robots
Amazing post thanks for sharing the post.Your blogs are admirable and full of knowledgeEngineering Design | Contract Manufacturing |Precision Components
ReplyDeleteIncredible post. We are the supplier of Gantry robot in delhi. We have developed an enviable reputation as a provider of solutions for services like Servo planetary, Pic & place gantry robots, AGV, engineering solutions and robotics. We are committed to provide the latest updates about manufacturing world, innovations and trends. Gantry robot in delhi
ReplyDelete